# hölder inequality

• ### Cauchy-Schwarz Inequality

2020-7-19 · The inequality hold if and only if is proportional to . Proof use lemma Young s inequality In mathematical analysis Hölder s inequality named after Otto Hölder is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces . If

• ### Hölder s Inequality Brilliant Math Science Wiki

Hölder s inequality is often used to deal with square (or higher-power) roots of expressions in inequalities since those can be eliminated through successive multiplication. Here is an example Let a b c a b c a b c be positive reals satisfying a b c = 3 a b c=3 a b c = 3 .

• ### Otto Hölder (18591937)BiographyMacTutor History

2011-8-29 · Biography Otto Hölder worked on the convergence of Fourier series and in 1884 he discovered the inequality now named after him. He became interested in group theory through Kronecker and Klein and proved the uniqueness of the factor groups in a composition series. His father was Otto Hölder (1811-1890) professor of French at the Polytechnikum in Stuttgart the son of Christian

• ### A matrix reverse Hölder inequalityScienceDirect

2009-11-1 · A matrix reverse Hölder inequality is given. This result is a counterpart to the concavity property of matrix weighted geometric means. It extends a scalar inequality due to Gheorghiu and contains several Kantorovich type inequalities.

• ### REMARKS ON THE STABILITY OF HOLDER INEQUALITIES

2016-6-28 · Annales Academia Scientiarum Fennice Series A.I. Mathematica Volumen 10 1985 89-94 Commentationes in honorem Olli Lehto LX annos nato REMARKS ON THE STABILITY OF REYERSE HOLDER INEQUALITIES AND QUASICONFORMAL MAPPINGS B. BOJARSKI In this note we indicate that a refined version of the local Fefferman-Stein inequality for a sharp maximal operator improves

• ### (Hölder s Inequality)

2020-10-23 · 2 . (1)Jensen s Inequality. Jensen s Inequality. . . . .

• ### Hölder s inequality in nLab

2018-4-5 · Hölder s inequality is closely related to the notion of log-convexity. On the one hand we saw that the inequality follows from the convexity of the exponential function which is the most basic log-convex function of all. On another hand we have the following result which uses Hölder s inequality.

• ### More on Hölder s Inequality and It s Reverse via the

2020-10-18 · Hölder s inequality is one of the greatest inequalities in pure and applied mathematics. As is well known Hölder s inequality plays a very important role in different branches of modern mathematics such as linear algebra classical real and complex analysis probability and statistics qualitative theory

• ### Hölder s identity — Princeton University

We clarify that Hölder s inequality can be stated more generally than is often realized. This is an immediate consequence of an analogous information-theoretic identity which we call Hölder s identity. We also explain Andrew R. Barron s original use of the identity.

• ### Sobolev inequalities and embedding theorems

2008-10-6 · Sobolev inequalities and embedding theorems The simplest Sobolev imbedding th. eorem is the following (trivial) inclusion 4 1

• ### probability theoryProving conditional Hölder inequality

2020-8-18 · (This is just putting the conditions for equality into Young s inequality.) In proving the conditional form of Holder s inequality the infimum will be taken over λ a positive F -measurable function.

• ### Otto Hölder (18591937)BiographyMacTutor History

2011-8-29 · Biography Otto Hölder worked on the convergence of Fourier series and in 1884 he discovered the inequality now named after him. He became interested in group theory through Kronecker and Klein and proved the uniqueness of the factor groups in a composition series. His father was Otto Hölder (1811-1890) professor of French at the Polytechnikum in Stuttgart the son of Christian

• ### linear algebraHölder s inequality for matrices

2021-6-5 · There are (at least two) "generalizations" of Hölder inequality to the non-commutative case. One is the so called tracial matrix Hölder inequality langle A B rangle_ HS = mat Tr (A dagger B) le A_p B_q where A_p is the Schatten p -norm and 1/p 1/q=1 . You can find a proof here.

• ### Hölder inequalityEncyclopedia of Mathematics

2012-11-29 · In the Hölder inequality the set S may be any set with an additive function μ (e.g. a measure) specified on some algebra of its subsets while the functions a k (s) 1 ≤ k ≤ m are μ -measurable and μ -integrable to degree p k. The generalized Hölder inequality.

• ### A Note on H¨older s Inequality

2009-7-6 · A note on H¨older s inequality 1995 Let x = a b and a ≺ b. (if a b take x = b a). Therefore asbt ≤ as bt. Now replace a and b by 1 −a and 1−b respectively we obtain (1− a)s(1−b)t ≤ s(1− a) t(1− b) =1− sa− tb ≤ 1− asbt. We will now proof Holder s Inequality. 3.2 Holder s Inequality

• ### On Hölder s inequality and its applications Octogon

2002-4-1 · The main purpose of the present article is first to give a simple generalizations of Hölder s inequality by using the method of analysis and theory of inequality. Then as applications we improve some new type Pachpatte s inequalities. References 1 . D. S. Mitrinović Analytic inequalities Springer-Verlag New York 1970.

• ### Sobolev inequalities and embedding theorems

2008-10-6 · Sobolev inequalities and embedding theorems The simplest Sobolev imbedding th. eorem is the following (trivial) inclusion 4 1

• ### real analysisHölder inequality and interpolation

2021-1-18 · I found this interpretation of the Hölder inequality. It says that we are trying to find an estimate of ∫fagb with the knowledge of ∫ fp and ∫ gq. For (a b) = (1 1) we need the relationship 1 p 1 q = 1 so that the points (p 0) (1 1) (0 q) lie on the same line. We can know use interpolation to have the Hölder inequality

• ### Hölder s and Minkowski s Inequalities SpringerLink

FREIMER M. and G. S. MUDHALKAR A class of generalizations of Hölder s inequality Inequalities in Statistics and Probability. IMS Lecture Notes — Monograph Series 5

• ### Cauchy-Schwarz Inequality

2020-7-19 · The inequality hold if and only if is proportional to . Proof use lemma Young s inequality In mathematical analysis Hölder s inequality named after Otto Hölder is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces . If

• ### Hölder s inequality in nLab

2018-4-5 · Hölder s inequality is closely related to the notion of log-convexity. On the one hand we saw that the inequality follows from the convexity of the exponential function which is the most basic log-convex function of all. On another hand we have the following result which uses Hölder s inequality.

• ### REMARKS ON THE STABILITY OF HOLDER INEQUALITIES

2016-6-28 · Annales Academia Scientiarum Fennice Series A.I. Mathematica Volumen 10 1985 89-94 Commentationes in honorem Olli Lehto LX annos nato REMARKS ON THE STABILITY OF REYERSE HOLDER INEQUALITIES AND QUASICONFORMAL MAPPINGS B. BOJARSKI In this note we indicate that a refined version of the local Fefferman-Stein inequality for a sharp maximal operator improves

• ### REVERSE HÖLDER MINKOWSKI AND HANNER

2021-4-6 · The Hölder and Minkowski inequalities are well-known inequalities that are fundamental to the study of Lp spaces. The p-Schatten norm jjXjj p= Tr (X X)p=2 1=pis known to also satisfy these inequalities when p 1. Using the technique of majorization 3 ﬁrst established a reverse Minkowski inequality jjA Bjj

• ### probability theoryProving conditional Hölder inequality

2020-8-18 · Alternatively the standard Hölder s inequality gives us mathbb Eleft XYright

• ### A Proof of Hölder s Inequality Using the Layer Cake

2020-12-8 · A Proof of Hölder s Inequality Using the Layer Cake Representation. Posted by Calvin Wooyoung Chin December 8 2020 December 8 2020 Posted in Notes Tags Analysis Fubini s Theorem Hölder s Inequality Inequality Measure Theory Probability. We prove Hölder s inequality using the so-called layer cake representation and the tensor

• ### More on Hölder s Inequality and It s Reverse via the

2020-10-18 · Hölder s inequality is one of the greatest inequalities in pure and applied mathematics. As is well known Hölder s inequality plays a very important role in different branches of modern mathematics such as linear algebra classical real and complex analysis probability and statistics qualitative theory